Real Analysis Lecture Notes: 3.5 Functions of Bounded Variation
نویسندگان
چکیده
We will expand on the first part of Section 3.5 of Folland's text, which covers functions of bounded variation on the real line and related topics. We begin with functions defined on finite closed intervals in R (note that Folland's approach and notation is slightly different, as he begins with functions defined on R and uses T F (x) instead of our V [f ; a, b]).
منابع مشابه
A companion of Ostrowski's inequality for functions of bounded variation and applications
A companion of Ostrowski's inequality for functions of bounded variation and applications are given.
متن کاملOn the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملSome properties of analytic functions related with bounded positive real part
In this paper, we define new subclass of analytic functions related with bounded positive real part, and coefficients estimates, duality and neighborhood are considered.
متن کاملp-Lambda-bounded variation
A characteriation of continuity of the $p$-$Lambda$-variation function is given and the Helly's selection principle for $Lambda BV^{(p)}$ functions is established. A characterization of the inclusion of Waterman-Shiba classes into classes of functions with given integral modulus of continuity is given. A useful estimate on modulus of variation of functions of class $Lambda BV^{(p)}$ is found.
متن کاملLecture notes for Math 205A
Essentially nothing found here is original except for a few mistakes and misprints here and there. These lecture notes are based on material from the following books: H. Royden " Real Analysis " , L. Evans and R. Gariepy " Measure Theory and Fine Properties of Functions " , J. Duoandikoetxea " Fourier Analysis " , and M. Pinsky " Introduction to Fourier Analysis and Wavelets " .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010